(* Corresponding author; ♯Co-first author; ^ Undergraduate author
[62] M. Ni♯, X. Y. Wu♯, Y. Y. Gui, Y. Huang, F. Wang*, Chao Li*, A dual metal-organic framework-based electrochemical biosensor for the capture and detection of cancerous exosomes. ACS Applied Nano Materials 2023, doi: 10.1021/acsanm.3c04336
[61] L. Xu*, P. P. Deng, W. Z. Song, M. L. Liu, M. R. Wang, Y. Yu, F. Wang*, An AIE-active cyclometalated Iridium(III) photosensitizer for selective discrimination, imaging, and synergistic elimination of gram-positive bacteria. ACS Materials Letters 2023, 5, 162-171.
[60] 朱肖俊,王帆,吴新悦,王峰*,盐酸小檗碱碳点的合成及抗菌性能研究。合肥工业大学学报 2022,已接收
[59] B. Youden, F. Wang, X. H. Zhang, D. Curry, N. Majtenyi, A. Shaaer, K. Bingham, Q. Nguyen, L. Bragg, J. W. Liu, M. Servos*, X. Zhang*, R. Q. Jiang*, Degradable multifunctional gold-liposomes as an all-in-one theranostic platform for image-guided radiotherapy. International Journal of Pharmaceutics 2022, 629, 122413.
[58] Y. Yan♯, M. Ni♯, F. Wang♯, Y. Yu, X. Gong, Y. Huang, W. Tao, C. Li*, F. Wang*, Metal-organic framework-based biosensor for detecting hydrogen peroxide in plants through color-to-thermal signal conversion, ACS Nano 2022, 16, 15175-15187.
[57] Y. Yu, L. P. Sun, Y. F. Tang, H. X. Zhu, H. Wang, H. Xiao, F. Wang*, W. Tao*, Preparation of cisplatin delivery calcium phosphate nanoparticles using poly(Pt(IV) prodrug) as the payload. Materials Today Communications 2022, 33, 104283.
[56] Z. F. Wang♯, Y. Yan♯, C. Li♯, Y. Yu, S. Cheng, S. Chen, X. J. Zhu, L. P. Sun, W. Tao, J. W. Liu, F. Wang*, Fluidity-guided assembly of Au@Pt on liposomes as a catalase-powered nanomotor for effective cell uptake in cancer cells and plant leaves, ACS Nano 2022, 16, 9019-9030.
[55] Y. Yu♯, Z. F. Wang♯, S. C. Wu, C. M. Zhu, X. S. Meng, C. Li, S. Cheng, W. Tao, F. Wang*, A glutathione-sensitive nanoglue platform with effective nucleic acids gluing onto liposomes for photo-gene therapy. ACS Applied Materials & Interfaces 2022, 14, 25126-25134.
[54] L. P. Sun♯, Y. Yan♯, S. Chen, Z. J . Zhou, W. Tao, C. Li*, Y. Feng*, F. Wang*, Co-N-C single-atom nanozymes with oxidase-like activity for highly sensitive detection of biothiols. Analytical and Bioanalytical Chemistry 2022, 1857-1865.
[53] Y. Yan♯ , X. J. Zhu♯ , Y. Yu♯ , C. Li, Z. L. Zhang*, F. Wang*, Nanotechnology strategies for plant genetic engineering. Advanced Materials 2022, 2106945.
[52] S. Chen♯ , Y. Yan♯ , Y. Yu♯ , Z. F. Wang, X. J. Zhu, L. P. Sun, C. Li, F. Wang*, Ferric Ions as a Catalytic Mediator in Metal-EGCG Network for Bactericidal Effect and Pathogenic Biofilm Eradication at Physiological pH. Advanced Materials Interfaces 2021, 202101605
[51] R. K. Gao, C. B. Zhan, C. Y. Wu, Y. Lu, B. Q. Cao, J. Huang, F. Wang, L. D. Yu*, Simultaneous single-cell phenotype analysis of hepatocellular carcinoma CTCs using SERS-aptamer based microfluidic chip. Lab on a Chip 2021, 21, 3888-3898
[50] L. P. Sun♯, C. Li♯, Y. Yan, Y. Yu, H. Zhao, Z.J. Zhou, F. Wang*, Y. Feng*, Engineering DNA/Fe-N-C single-atom nanozymes interface for colorimetric biosensing of cancer cells. Analytica Chimica Acta 2021, 1180, 338856
[49] H. Li♯, M. L. Li♯, Y. C. Yang, F. Wang, F. Wang*, Chao Li*, Aptamer-Linked CRISPRCas12a-Based Immunoassay. Analytical Chemistry 2021, 93, 3209-3216
[48] P. P. Deng♯, Y. Y. Pei♯, M. L. Liu, W. Z. Song, M. R. Wang, F. Wang*, C. X. Wu, L. Xu*, A rapid “on-off-on” mitochondria-targeted phosphorescent probe for selective and consecutive detection of Cu2+ and cysteine in live cells and zebrafish. RSC Advances 2021,11, 7610-7620
[47] J. Y. Huang♯, M. Jian♯, S. H. Chen♯, S. Y. Zhang, T. Liu*, C. Li*, F. Wang*, A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosensors and Bioelectronics 2020, 143, 112310
[46] B. M. Hao, Y. N. Liu, C. Y. Zhang, G. Q. Li, W. N. Wang, W. D. Xu, Z. B. Zha, F. Wang, C. Li, Z. H. Miao, X. X. Yang, Y. Li. Chen, H. S. Qian*, W. Zhou*, Autophagic blockage by bismuth sulfide nanoparticles inhibits migration and invasion of HepG2 cells. Nanotechnology 2020, 31, 465102
[45] R. K. Gao*, L. Cheng, S. Y. Wang, X. B. Bi, X. L. Wang, R. Wang, X. Y. Chen, Z. B. Zha, F. Wang, X. F. Xu, G. Zhao*, L. D. Yu*, Efficient separation of tumor cells from untreated whole blood using a novel multistage hydrodynamic focusing microfluidics. Talanta 2020, 207, 120261
[44] Y. C. Ma♯, Y. X. Zhang♯, X. Q. Li♯, Y. Y. Zhao, M. Li, W. Jiang, X. F. Tang, J. X. Dou, L. G. Lu, F. Wang*, Y. C. Wang*, Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 2019, 13, 11967-11980
[43] H. Wang, H. Li, Y. Huang, M. H. Xiong, F. Wang*, C. Li*, A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosensors and Bioelectronics 2019, 142, 111531
[42] X. S. Wang♯, X. Q. Li♯, H. Wang, X. H. Zhang, L. Zhang, F. Wang* and J. W. Liu*, Charge and Coordination Directed Liposome Fusion onto SiO2 and TiO2 Nanoparticles. Langmuir 2019, 35, 5, 1672-1681
[41] L. Zhang, J. Xu, F. Wang, Y. Ding, T. Wang, G. Jin, M. Martz, Z. Z. Gui, P. K Ouyang* and P. Chen*, Histidine-Rich Cell-Penetrating Peptide for Cancer Drug Delivery and Its Uptake Mechanism. Langmuir 2019, 35, 3513-3523
[40] L. Zhang*, Y. B. Sheng, A. Z. Yazdi, K. Sarikhani, F. Wang, Y. S. Jiang, J. W. Liu, Tao Zheng, W. Wang, P. K Ouyang* and P. Chen*, Surface-assisted assembly of a histidine-rich lipidated peptide for simultaneous exfoliation of graphite and functionalization of graphene nanosheets. Nanoscale 2019, 11, 2999-3012
[39] Y. B. Liu, F. Wang*, and J. W. Liu*, Headgroup-Inversed Liposomes: Biointerfaces, Supported Bilayers and Applications. Langmuir 2018, 34, 9937-6635
[38] X. R. Liu♯, X. Q. Li♯, W. Xu^, X. H. Zhang, Z. C. Huang, F. Wang*, and J. W. Liu*, Sub-Angstrom Gold Nanoparticle/Liposome Interfaces Controlled by Halides. Langmuir 2018, 34, 6628-6635
[37] X. H. Zhang, A. Lopez, Y. B. Liu, F. Wang and J. W. Liu*, Interactions between citrate-capped gold nanoparticles and polymersome. Journal of Physics D: Applied Physics, 2018, 51, 244001
[36] S. Y. Li, F. Wang*, X. Q. Li, J. Chen, X. H. Zhang, Y. C. Wang* and J. W. Liu*, Dipole Orientation Matters: Longer-Circulating Choline Phosphate than Phosphocholine Liposomes for Enhanced Tumor Targeting. ACS Applied Materials & Interfaces, 2017, 9, 17736-17744
[35] F. Wang, X. H. Zhang, Y. B. Liu, Z. Y. Lin, B. W. Liu and J. W. Liu*, Profiling metal oxides with lipids: Magnetic liposomal nanoparticles displaying DNA and proteins. Angewandte Chemie International Edition, 2016, 55, 12063-12067
[34] P. J. J. Huang, F. Wang and J. W. Liu*, Liposome/Graphene oxide interaction studied by isothermal titration calorimetry. Langmuir, 2016, 32, 2458-2463
[33] H. Liang*, S. H. Jiang, Q. P. Yuan, G. F. Li, F. Wang, Z. J. Zhang and J. W. Liu*, Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection. Nanoscale, 2016, 8, 6071-6078
[32] F. Wang, D. Curry and J. W. Liu*, Driving adsorbed gold nanoparticle assembly by merging lipid gel/fluid interfaces. Langmuir, 2015, 31, 13271-13274
[31] F. Wang and J. W. Liu*, A stable lipid/TiO2 interface with headgroup inversed phosphocholine and a comparison with SiO2. Journal of the American Chemical Society, 2015, 137, 11736-11742
[30] F. Wang and J. W. Liu*, Self-healable and reversible liposome leakage by citrate-capped gold nanoparticles probing initial adsorption/desorption induced lipid phase transition. Nanoscale, 2015, 7, 15599-15604
[29] F. Wang and J. W. Liu*, Evaporation induced wrinkling of graphene oxide at the nanoparticle interface. Nanoscale, 2015, 7, 919-923
[28] F. Wang♯, R. Saran♯ and J. W. Liu*, Tandem DNAzymes for mRNA cleavage: choice of enzyme, metal ions and the antisense effect. Bioorganic & Medicinal Chemistry Letters, 2015, 25, 1460-1463
[27] P. J. J. Huang, F. Wang and J. W. Liu*, A cleavable molecular beacon for Hg2+ detection based on phosphorothioate RNA modifications. Analytical Chemistry, 2015, 87, 6890-6895
[26] H. D. Liu, L. Li, C. Voss, F. Wang, J. W. Liu, and S. S. C. Li*, A comprehensive immunoreceptor phosphotyrosine-based signaling network revealed by reciprocal protein-peptide array screening. Molecular & Cellular Proteomics, 2015, 14, 1846-1858
[25] W. C. Low, P. O. Rujitanaroj, F. Wang, J. Wang and S. Y. Chew*, Nanofiber-mediated release of retinoic acid and brain-derived neurotrophic factor for enhanced neuronal differentiation of neural progenitor cells. Drug Delivery and Translational Research, 2015, 5, 89-100
[24] F. Wang and J. W. Liu*, Liposome supported metal oxide nanoparticles: interaction mechanism, light controlled content release and intracellular delivery. Small, 2014, 10, 3927-3931
[23] F. Wang and J. W. Liu*, Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide. Nanoscale, 2014, 6, 7079-7084
[22] X. Zhang, F. Wang, B. W. Liu, E. Kelly, M. Servos and J. W. Liu*, Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles. Langmuir, 2014, 30, 839-845
[21] W. H. Zhou, F. Wang, J. S. Ding* and J. W. Liu*, Tandem phosphorothioate modifications for DNA adsorption strength and polarity control on gold nanoparticles. ACS Applied Materials & Interfaces, 2014, 6, 14795-14800
[20] T. M. Sun, Y. C. Wang, F. Wang, J. Z. Du, C. Q. Mao, C. Y. Sun, R. Z. Tang, Y. Liu, J. Zhu, Y. H. Zhu, X. Z. Yang and J. Wang*, Cancer stem cell therapy using doxorubicin conjugated to gold nanoparticles via hydrazone bonds. Biomaterials, 2014, 35, 836-845
[19] Y. Li, F. Wang, T. M. Sun, J. Z. Du, X. Z. Yang* and J. Wang*, Surface modulated and thermoresponsive polyphosphoester nanoparticles for promoted intracellular drug delivery. Science China Chemistry, 2014, 57, 579-585 845
[18] W. W. Liu, Y. C. Wang, Y. Li, F. Wang, X. Z. Yang*, T. M. Sun, J. Z. Du and J. Wang*, Multiresponsive polymer assemblies achieved by a subtle chain terminal modification. Chinese Journal of Chemistry, 2014, 32, 51-56
[17] F. Wang, B. W. Liu, A. C. F. Ip and J. W. Liu*, Orthogonal adsorption onto nano-graphene oxide using different intermolecular forces for multiplexed delivery. Advanced Materials, 2013, 25, 4087-4092
[16] W. Q. Li♯, F. Wang♯, Z. M. Liu, Y. C. Wang, J. Wang* and F. Sun*, Gold nanoparticles elevate plasma testosterone levels in male mice without affecting fertility. Small, 2013, 9, 1708-1714
[15] F. Wang and J. W. Liu*, Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotube and graphene oxide. Nanoscale, 2013, 5, 12375-12382
[14] F. Wang, B. W. Liu, P. J. J. Huang and J. W. Liu*, Rationally designed nucleobase and nucleotide coordinated nanoparticles for selective DNA adsorption and detection. Analytical Chemistry, 2013, 85, 12144-12151
[13] F. Wang, P. J. J. Huang and J. W. Liu*, Citrate inhibition of cisplatin reaction with DNA studied using fluorescently labeled oligonucleotides: implication for selectivity towards guanine. Chemical Communications, 2013, 49, 9482-9484
[12] W. Q. Li, C. Y. Sun, F. Wang, Y. C. Wang, Y. W. Zhai, M. Liang, W. J. Liu, Z. M. Liu, J. Wang* and F. Sun*, Achieving a new controllable male contraception by photothermal effect of gold nanorods. Nano Letters, 2013, 13, 2477-2484
[11] B. W. Liu, P. J. J. Huang, X. Zhang, F. Wang, R. Pautler, A. C. F. Ip and J. W. Liu*, Parts-per-million of polyethylene glycol as a non-interfering blocking agent for homogeneous biosensor development. Analytical Chemistry, 2013, 85, 10045-10050
[10] P. O. Rujitanaroj, B. Jao, J. Yang, F. Wang, J. M. Anderson, J. Wang and S. Y. Chew*, Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing. Acta Biomaterialia, 2013, 9, 4513-4524
[9] Z. M. Liu, W. Q. Li, F. Wang, C. Y. Sun, L. Wang, J. Wang* and F. Sun*, Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells. Nanoscale, 2012, 4, 7135-7142
[8] H. Q. Cao, G. Marcy, E. L. K. Goh, F. Wang, J. Wang and S. Y. Chew*, The effects of nanofiber topography on astrocyte behavior and gene silencing efficiency. Macromolecular Bioscience, 2012, 12, 666-674
[7] Y. Y. Yuan, J. Z. Du, W. J. Song, F. Wang, X. Z. Yang, M. H. Xiong and J. Wang*, Biocompatible and functionalizable polyphosphate nanogel with a branched structure. Journal of Materials Chemistry, 2012, 22, 9322-9329
[6] T. Xing, X. Z. Yang, F. Wang, B. Lai and L. F. Yan*, Synthesis of polypeptide conjugated with near infrared fluorescence probe and doxorubicin for pH-responsive and image-guided drug delivery. Journal of Materials Chemistry, 2012, 22, 22290-22300
[5] Y. Y. Yuan, C. Q. Mao, X. J. Du, J. Z. Du, F. Wang and J. Wang*, Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Advanced Materials, 2012, 24, 5476-5480
[4] F. Wang♯, Y. C. Wang♯, S. Dou, M. H. Xiong, T. M. Sun and J. Wang*, Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano, 2011, 5, 3679-3692
[3] Y. C. Wang♯, F. Wang♯, T. M. Sun and J. Wang*, Redox-responsive nanoparticles from the single disulfide bond-bridged block copolymer as drug carriers for overcoming multidrug resistance in cancer cells. Bioconjugate Chemistry, 2011, 22, 1939-1945
[2] Y. C. Wang, Y. Y. Yuan, F. Wang and J. Wang*, Syntheses and characterization of block copolymers of poly(aliphatic ester) with clickable polyphosphoester. Journal of Polymer Science: Part A: Polymer Chemistry, 2011, 49, 487-494
[1] F. Wang , Y. C. Wang, L. F. Yan and J. Wang*, Biodegradable vesicular nanocarriers based on poly(ε-caprolactone)-block-poly(ethyl ethylene phosphate) for drug delivery. Polymer, 2009, 50, 5048-5054
[23] Y. C. Yang, Y. Huang, C. Li*, A reusable electrochemical sensor for one-step biosensing in complex media using triplex-forming oligonucleotide coupled DNA nanostructure. Analytical Chimica Acta, 2019, 1055, 90-97
[22] J. H. Ma, W. X. Chai, J. Y. Lu, T. Tian, S. Wu, Y. Cai Yang, J. Yang, C. Li* and G. X. Li*, Coating DNA self-assembled monolayer with a metal organic framework-based exoskeleton for improved sensing performance. Analyst, 2019, 144, 3539-3545
[21] Li C., et al. Design of a stretchable DNAzyme for sensitive and multiplexed detection of antibodies. Analytical Chimica Acta, 2018, 1041, 102-107
[20] Li C., et al. Assembly of Nanoconjugates as New Kind Inhibitor of the Aggregation of Amyloid Peptides Associated with Alzheimer’s Disease. Particle & Particle System Characterization, 2018, 35, 1700384
[19] Li C., et al. Design of DNA nanostructure-based interfacial probes for electrochemical detection of nucleic acid directly in whole blood. Chemical Science, 2018, 9, 979-984
[18] Li C., et al., Dynamic sandwich-type electrochemical assay for protein quantification and protein–protein interaction, Analyst, 2017, 142, 4399-4404
[17] Li C., et al., Flexible regulation of DNA displacement reaction through nucleic acid-recognition enzyme and its application in keypad lock system and biosensing. Scientific Reports, 2017, 7, 10017
[16] Hu. X., Li C., One-step colorimetric detection of an antibody based on protein-induced unfolding of a G-quadruplex switch. Chemical Communications, 2017, 53, 4692-4694
[15] Li C., et al., In Vitro Analysis of DNA-Protein Interactions in Gene Transcription Using DNAzyme-Based Electrochemical Assay. Chemical Science, 2017, 89, 5003-5007
[14] Li C., et al., One-Step Modification of Electrode Surface for Ultrasensitive and Highly Selective Detection of Nucleic Acids with Practical Applications. Chemical Science, 2016, 88, 7583-7590
[13] Li C., et al., Dynamic light scattering (DLS)-based immunoassay for ultra-sensitive detection of tumor marker protein. Chemical Communications, 2016, 52, 7850-7853
[12] Li C., et al., Improvement of enzyme-linked immunosorbent assay for the multicolor detection of biomarkers. Chemical Science, 2016, 7, 3011-3016
[11] Li C., et al., Simple electrochemical sensing of attomolar proteins using fabricated complexes with enhanced surface binding avidity. Chemical Science, 2015, 6, 4311-4317
[10] Li C., et al., An Array-Based Approach to Determine Different Subtype and Differentiation of Non-Small Cell Lung Cancer. Theranostics, 2015, 5, 62-70
[9] Li C., et al., Ultrasensitive detection of lead ion based on target induced assembly of DNAzyme modified gold nanoparticle and graphene oxide. Analytical Chimica Acta, 2014, 831, 60-64
[8] Li C., et al., Conjugation of Graphene Oxide with DNA-Modified Gold Nanoparticles to Develop a Novel Colorimetric Sensing Platform. Particle & Particle System Characterization, 2014, 31, 201-208
[7] Li C., et al., Fabrication of hand-in-hand nanostructure for one-step protein detection. Chemical Communications, 2013, 49, 3760-3762
[6] Yang Y., Li C., A programmed terminal extension strategy to light up multiple beacons for DNA and cellular telomerase detection. Chemical Communications, 2017, 53, 5752-5755
[5] Ma J, Li C., et al., Electrochemical detection of Nanog in cell extracts via target-induced resolution of an electrode-bound DNA pseudoknot. Biosensors & Bioelectronics, 2016, 86, 933-938.
[4] Fan Q, Li C., et al., Simple and fast screening of G-quadruplex ligands with electrochemical detection system. Talanta, 2016, 160, 144-147.
[3] Wu D, Li C., et al., Electrochemical detection of DNA 3'-phosphatases based on surface-extended DNA nanotail strategy. Analytical Chimica Acta, 2016, 924, 29-34.
[2] Yang Y, Li C., et al., Enhanced charge transfer by gold nanoparticle at DNA modified electrode and its application to label-free DNA detection. ACS Applied Materials & Interfaces, 2014, 6, 7579-7584.
[1] Wei L., Wang X., Li C., et al., Colorimetric assay for protein detection based on 'nano-pumpkin' induced aggregation of peptide-decorated gold nanoparticles. Biosensors & Bioelectronics, 2015, 71, 348-352.